A Processing Expansion Module For The LEGO
MINDSTORMS NXT

Marcel Danilo Alves Siqueira!, Helder Luiz Schmitt?, Alessandro Goedtel® and
Marcos Banheti Rabello Vallim*

Abstract— This paper presents a processing expan-
sion module (MEP) for a NXT controller. The NXT
computational capability is insufficient for some ap-
plications. In this work we introduce a LEGO module
to support this performance demand. The module is
connected to the NXT by a RS-485 communication.
Through it, MEP sends requisitions to the NXT,
which acts like a slave only. Into the MEP, NXC
functions are instantiated in C language. With this
new structure, the user’s algorithm is processed by
the MEP, then the it sends data with NXC func-
tions parameters just for inherent resources of the
NXT. The results show latency times of the instan-
tiated functions, comparing them to another known
remote processing methods. The MEP functionality
is demonstrated in a practical application, where a
line follower robot is controlled by an artificial neural
network.

I. INTRODUCTION

Educational robotics arose as a way of teaching of
science and technology. Computational resources that
prevailed in industrial and research environments were
taken to education field [1]. Today, robotics is seen as
a tool for teaching and catalysing study of technology
[2]. Within the scenario of educational robotics there
is an important character, the LEGO MINDSTORMS
NXT. This product is the result of a series of evolutions,
with work started by the fusion of LEGO mechanics
with computational resources. With the NXT kit several
applications are possible, for example, on teaching of
control systems, nonlinear systems and embedded com-
puting [3].

The LEGO mechanics friendliness and the availability
of several and easy-to-use computing resources motivate
the of use of NXT [4]. Commercially there are wide range
of sensors and actuators developed and compatible with
the NXT, which make it wanted for fast implementa-
tions that require advanced hardware: sensors of color ,
pressure, light, acceleration and electronic compass are
examples of devices ready to use available for the NXT.

*This work was supported by the Federal University of Tech-
nology - Parand (UTFPR), campus Cornélio Procépio.

L4 Marcel D. A. Siqueira and Marcos B. R. Vallim are with the
Centro de Experimentagao Ninho de Pardais, UTFPR, marcel-
danilo@gmail.com, mvallim@utfpr.edu.br.

2,3 Helder L. Schmitt and Alessandro Goedtel are with
the Centro Integrado de Pesquisa em Controle e Automagao
(CIPECA), UTFPR, 1640 Alberto Carazzai Avenue, Cornélio
Procépio, Parand, Brazil. helderschmitt@gmail.com, agoed-
telQutfpr.edu.br.

The hardware design of the NXT kit dates from 2006.
Even with the update version 2.0 there was no improve-
ment in processing. This hardware profile can generate
limitations for applications which require higher perfor-
mance processing. To overcome this barrier, usually it
is made by remote processing on a computer through
Bluetooth communication [5], [4].

This paper presents an alternative solution to the
performance limit of the NXT. The proposal is an on-
board expansion module for remote processing, called
here by MEP. Unlike other methods, the MEP uses RS-
485 communication between the NXT and an external
microcontroller, more modern and that has more pow-
erful processing capability. In this structure, the NXT
acts as a slave, restricted to the performance of functions
required by the MEP. At the other end, an STM32F4
microcontroller concentrates most of the logic processing,
and communicates with LEGO only to perform inherent
NXT functions. To the user, the remote interface employs
the syntax of the language NXC, already widely used
with MINDSTORMS controllers.

Forward, we present details about the NXT kit hard-
ware and communication. The design of the MEP
is therefore presented, focusing on the communication
strategy, the underlying hardware and software steps.
Finally, the achieved results are shown, divided into
an analysis of time response of remote functions and a
practical application, with a line follower robot controlled
by an embedded artificial neural network.

II. Tue LEGO MINDSTORMS NXT

The LEGO MINDSTORMS NXT kit has a set of
mechanical parts and a set of hardware that contains the
controller, sensors, actuators and wires. The combination
of these components allows the creation of several types
of robots, such as robotic arms, vehicles and inverted
pendulum. The MINDSTORMS series, originally de-
signed for child audiences, achieved wide audience of
engineers and researchers [10].

A. Hardware NXT

The NXT controller hardware has two microcon-
trollers, the main one and the auxiliary one. The main
microcontroller is an AT91SAM7S256, whose role is
user’s algorithm processing and communication. The
auxiliary one, an ATMEGAA48, is intended for low-level
control of actuators and reading analog sensors. The

general structure of the NXT controller is illustrated in
Figure 1.

The main microcontroller has a 32-bit ARM7 proces-
sor, operates at 48 MHz, has 256 kB of flash memory
for programs and 64 kB RAM memory. The device is
responsible for storage and execution of firmware, which
implements functions to access the hardware and runs
user applications.

B. NXT communication resources

To exchange data between the NXT and any other
computer, the following means are commonly used: 12C,
RS-485, USB and Bluetooth - all interfaced with the
main microcontroller.

The NXT brick has four sensor inputs, and any of
these can implement 12C communication. In brick, the
maximum transmission rate for the 12C is 9600 bps, with
packages of eight bits [6].

The LEGO NXT has a Bluetooth Bluecore™ 4.0
module, with up to 464 kbps [7]. For remote processing,
Bluetooth has unstable performance, being vulnerable as
the position of the brick (on a mobile robot) varies to the
remote station location.

The main microcontroller of the NXT is a peripheral
USB Full Speed, assuming maximum nominal 12 Mbps.
Currently, the NXT has USB drivers for Windows, Mac
and Linux operating systems only, restricting its use for
these platforms.

Specially at the port number 4, the NXT brick imple-
ments RS-485 communication. This port reaches up to
921.6 kbps and can have a structure of a master and up
to seven slaves [8]. Among all others, it is chosen for use
in this work.

I1I. MEP CONCEPTION

The MEP is intended to support applications of big-
ger computational demand that the NXT can do. The
applications in question are those that require more data
processing than NXT resources. In applications such as

Power Bluetooths usB
supply Bluecore™ 4.0
Display q SPI-Bus IUART-Bus
Main Processor H
Atmel* ARM7
<> <>
g Buttons 11 II:C-BuQ 3
- 3
2 =
] g
—p Co-Processor -
Atmel* AVR
Fig. 1. NXT hardware structure. Extracted of [12]

these, the NXT processor can represent an obstacle for
the performance of the robot. If the data processing is
improved, there are a reduction of this obstacle and an
increasing of the system performance. With this intent
the expansion module is designed. This section organizes
the structure of the solution, showing the necessary hard-
ware and software for the embedded remote processing.

A. Hardware Structure

The design of the module is based on a structure that
has three main elements: the NXT, a communication
and an external microcontroller. The hardware developed
basically focuses on the RS-485 communication, the mi-
crocontroller powering, while the brick is not modified.

1) RS-485 Communication: The RS-485 communica-
tion is implemented in NXT using a converter ST485.
In this component, TTL level voltages are converted to
levels agreed for the RS-485.

The elements connected to the network do not need to
share the negative reference, since only the differential
voltage is viewed by a network element. It gives robust-
ness to noise and stability for long cables communications
[9].

In this work, we adopt the structure point-to-point
network, among the some possible topologies for RS-
485. The line is composed by the wires A and B. Once
connected to the line AB, an element initiates a byte
reception when the voltage Vp — V4 is at least 0.2 V.
Since there are only two elements in the network, there
is no need for addressing.

Compared with other forms of communication on the
NXT, the RS-485 stands out for ease of implementation
and performance. Software support for RS-485 is suffi-
cient for the development of the work, with functions
for reading and writing bytes and communication control
flags.

2) STM32F/ Series: To compose the MEP, some
microcontrollers were evaluated. Among them, the
STM32F407VG stood out due to its high-performance,
low power consumption and a development board which
can be embedded. It’s employed a Cortex-M4F, working
at 168 MHz clock, and performs up to 210 DMIPS (Dhry-
stone Million Instructions Per Second). The Cortex-M4F
contains DSP (Digital Signal Processor) and an FPU
(Float Point Unit) implemented in hardware.

To implement the RS-485 with STM32F4 was used
UART4 module with its TX and RX pins, and pin GPIO
(General Purpose Input Output) to data flow control.
Additional pins were also used to interface buttons and
LEDs. The work with this microcontroller was based on
the STM32F4DISCOVERY development board, and it
was developed an additional shield to implement the RS-
485 functionality, so with a MAX485 transceiver.

B. Software Structure

The usability of the kit is one of the greatest benefits
mentioned by users. There are structured programming

languages developed with specific features for the NXT.
Thus, as we gained in processing, we aimed to keep the
software usability. Among some several available, the
NXC (Not Exactly C) was chosen, a free to use, widely
spreaded language similar to C.

1) Instantiated Functions: The NXC language func-
tions have syntax like this: OnFwd(OUT_AB, 50), a
function which activates the outputs A and B at 50% of
the rated speed. Internally, this function is passed to the
auxiliary microcontroller (ATMEGAA48), that performing
the required control reduces the computational load of
the NXT main processor.

The software strategy adopted in this work is similar.
In a data packet bytes are sent; their values are function
parameters, as exemplified by the equation (1). In this
equation, the byte pary receives a constant set to a
function, and the remaining bytes carry parameters of
the corresponding function. That is the way the MEP
makes its requests to NXT. This, in turn, responds
with one/two-bytes packet only, for communication ACK
(acknowledgement) or data return.

{paroﬂ pa‘r:l? pa',rQ"' 7par6}
= {_OnFwd, OUT_BC, 95, 0, 0, 0, 0} (1)

Since a function receives an identification number, the
quantity functions instantiated in MEP is limited. So, in
an eight-bit communication, up to 256 functions may be
instantiated in the form of equation (1). This interval was
divided into function groups, and each group received
some of the most frequent used and most comprehensive
functions of the NXC language.

2) Master-Slave Communication: The user program
is written in C language in a programming environment
for ARM microcontrollers. Instantiated functions are
defined in a header file, that is common to the STM32F4
and NXT code compilers, AR EWARM 6.3 and Bricx
Command Center 3.3, respectively.

The software design of the MEP contains separate
modules for (a) NXC functions, (b) user application, (c)
communication and (d) startup. In (a) functions NXC are
instantiated; once these functions are called from (b), the
module output buffers UART4 is update with function
parameters (parg.g). From (¢) a communication function
is finally called, so it sends the parameters through RS-
485 communication.

On the side of the NXT, when the communication bus
is idle, an infinite loop waits for data to fulfil the 7-
byte input buffer. When a packet is received, the first
byte (paro) is tested, and the program is directed to
perform the corresponding function, carrying the other
parameters received (pari.g).

IV. PERFORMANCE AND APPLICATION
ANALYSIS

The remote processing of NXT, embedded or remote,
has performance related to the communication efficiency.

If the gain in processing time is lost in communication
delay, there is no real gain. This section aims to demon-
strate and situate the gain we get on the MEP. The
results cover aspects about communication time and an
embedded neural network application.

A. Response Times Results

The speed of the RS-485 communication has been
parameterized at 921.6 kbps, but the time response of
a single function is a more important indicator to check
the performance of the MEP. That time varies according
to the requested functions, as the NXT, internally, makes
different communications between microcontrollers, sen-
sors, and actuators. Thus, the remote control perfor-
mance via any communication type is dependent to the
internal latencies of the NXT. The following functions
are shown for motor control and sensor reading, and they
present also a brief about the NXT internal communica-
tion:

o OnFwd(OUT_A,100): sends a setpoint of 100%
speed to the output A. Internally, these parameters
are sent to ATmel48 via 12C;

e Sensor(IN_1): returns the value of a sensor set at
the input 1. In this experiment, we set a light sensor
whose reading is taken by ATmel48 and transferred
to AT91SAMYT via 12C;

o SensorUS(IN_1): returns the value of the ultra-
sonic distance sensor configured to input 1. The
sensor communicates directly with AT91SAMY7 via
12C at the rate of 9.6 kbps.

To compare the performance of the proposed expan-
sion module to standard tools, the three functions men-
tioned were tested. The Matlab toolbox RWTH-NXT
was used to call functions from a personal computer, so
its remote processing is linked to the NXT via either
Bluetooth or USB. From the MEP, the same functions
are called through the RS-485 port. The results are
compared in Table I.

TABLE 1
AVERAGE TIMES OF FUNCTIONS CALLED REMOTELY

Mode OnFwd Sensor SensorUS
Bluetooth 17,7 ms 72,5 ms 138 ms
USB 16,2ms 2,58 ms 19,8 ms
RS-485 3,26 ms 83,2 us 19,0 ms

From Table I shortest average for RS-485 can be
observed, as it carries packets with only seven bytes (Eq.
1) in contrast to Bluetooth and USB communications,
which using packets 62 and 64 bytes, respectively. In
terms of average values, the times of the RS-485 were
lower even than those presented by USB, whose specifi-
cation is much higher.

Wl(l’M

w1(2,1)

left sensor

:(0'

b

1

s,
»

2 W1(N,1)
e * W2(1,N)
W1(N,2) .
- W2(2,N)
right sensor input layer /

1st neural hidden layer

Fig. 2.

B. Application: NXT vs. MEP vs. PC

This subsection provides a comparative analysis of
performance of an application running in three different
computational means: LEGO NXT, MEP and PC. The
goal is to show the behavior and performance of the
hardware module proposed in this work, comparing it
to LEGO NXT and the PC.

The application was based on a work of [5], where
Artificial Neural Networks (ANN) were processed on the
PC and communicated by the RWTH-NXT toolbox to
the brick via Bluetooth. That study compared different
types of networks such as control agents of a line follower
robot. In this work, we employed a basic topology case
of a Multi Layer Perceptron network (MLP). Once it has
no delayed inputs, results may more sensitive reflect the
processing performance for the task of line following.

1) MLP network: The composition of the MLP and
the elements used in and out of the network are shown
in Figure 2. In this network, two sensors values are
read and normalized by feeding the first layer. The first
hidden neural layer has a number of N neurons. The
output neural layer contains two neurons, whose values
go through a post-processing task and update the speed
values of the two motors.

The robot was trained on a track, whose dimensions
are illustrated in Figure 3. The excerpts from A to F
are used for analysis of robot navigation. On this track,
data were generated from a PID control for the network
training. The values generated consisted of the error
between two light sensors and output, with the velocity
values of the two engines.

With this database, we used the training algorithm of
the generalized delta rule, presented by [11]. We used
learning rate n = 0.1, and error tolerance e = 10~7. For
every neuron, a logistic function was used, with g = 1.

2) Computational Load: The use of Artificial Neural
Networks (ANN) in this paper serves two ideas: it is
a typical application as a robot controller, and yet it

T N
w2(1,1)
/ 7\ w2(2,1)

left motor

output neural layer

-
. %\
als ;
" L)
right motor

MLP as controller of the robot

Fig. 3.

Track to the navigation analysis

can represent a computational load. ANN in the Figure
2 has N neurons in the first hidden neural layer and
this parameter is set to five, 25 and 50 neurons. The
effect of this variation is the amount of operations to
generate the outputs from the first hidden layer neural,
as the equation 2 links. As result, there is a correspondent
increasing of operations to the output neural layer, which
has similar equation. Still about computational load, we
aimed to evaluate the FPU effects over the variation
of neurons number. In the equation, g() is the logistic
function. To implement embedded (NXT and MEP), this
function was approximated by numeric table.

N
Yy = g (Z Wl(jl)JZl)

=0

(2)

3) Results for Iteration Times: The processing of the
MLP was measured when performed in the three different
computational means. The numeric indicator chosen is
the value of the MLP iteration. When processing the
NXT, there are no external communication times, just
for the MEP implementations and PC, so it was possible
to measure the MLP iteration with no communication.
We called it here by insulated operation.

The results are shown in Table II. For the MLP in

TABLE II
ITERATION TIMES RESULTS OF THE MLP

operation:

Processor Normal Insulate

q FPU Optimization

N=5 N =25 N = 50

NXT v

v 20,2 ms 63,9 ms 127 ms

(\
\

PC v v

v 316,9 us
v 202,6 ms

319,9 us
204,5 ms

323,5 us
206,0 ms

MEP

EENENAN
SNENEN

31,4 us
v 22,7 us
11,1 ps
4,58 us
17,00 ms

117 ps
88,4 us
42,7 pus
17,0 ps
17,11 ms

225 us
170 ps
82,2 us
34,5 us
17,22 ms

ANEN

50

0 50 100 150 200
NXT: MLP with N =5

250

50

0 50 100 150 200
NXT: MLP with N =25

250

50

0 20 40 60 80
NXT: MLP with N =50

100

20

10

50 100 150 200
PC: MLP with N =25
50

0 100 200
MEP: MLP with N =50

300

Fig. 4. Navigation response. In red color, the right motor speed;
in blue, the left motor speed

the NXT, time was measured over 1000 iterations by
an internal counter. At PC, it was used the functions
tic/toc of the Matlab. For the MEP, time was measured
by an oscilloscope Tektronix TDS-5054 over an output
pin, which received an inversion of the network every
1000 iterations.

Comparing the figures, it is possible to observe the
sensitivity of the NXT when the computational load gets
increased, while the PC time values do not suffer signifi-
cant changes, and the MEP remain virtually unchanged.
With this comparison, there was observed advantages of
the use of FPU and compiler code optimization.

4) Robot Navigation Results: The robot navigation
was analyzed in NXT, PC and MEP. The results of the
navigation performance were different, as suggested by
the results in Table II. Graphical results are shown in
Figure 4 for different implementations. The signals are
shown as motors speed A and B. The purpose was to
demonstrate three things: the failure of the NXT by in-
creasing the computational load, the MEP performance,
and the communication inefficiency with the PC.

The three first graphs show the behavior of the NXT.
The first graph shows satisfactory behavior when iter-
ating the network is 20.2ms (Table II) as the robot
presents stable navigation. With the MLP of N = 25,
the robot begins to unsettle the trajectory. For N = 50,
the trajectory is lost at the beginning of section D of the
circuit.

The implementation on the PC was not successful. The
speed was limited to 60% in the output of the MLP
for the robot did not leave the path. Thus, the robot
intermittently suffered errors of navigation. Even when
in straight movement, the robot was quite oscillatory
(section A), which confirms the impact of long-time
iteration for this implementation.

For the MEP, the iteration times did not vary sig-
nificantly, so navigation was similar for all values of N
assayed. The last graph shows the most critical case with
N = 50. The result was able to replicate the behavior of
the training.

V. CONCLUSIONS

This paper presented an expansion module for the
LEGO NXT. The module aims to contribute to the ap-

plicability of the kit and for supporting applications that
do not find sufficient capacity on the original hardware of
the NXT. The results showed benefits when embedding
remote processing using RS-485.

The design of the module occurred in a research envi-
ronment for educational robotics, so some future works
should aim to control applications of mobile robots for
different topologies of ANN and other intelligent systems.

An important next step in the work will be migrating
to free software for programming STM32F4 of the MEP.
Currently, there is some tools emerging, like environ-
ments aimed to Arduino platforms, but that can be
integrated to the STM32F4 programming.

ACKNOWLEDGMENT

Friends and workmates involved, thanks for all discus-
sions and contributions.

REFERENCES

[1] Foundation Logo, What is Logo?, 2011, available at el.media.
mit.edu/logo-foundation/logo/index.html.

[2] M. B. R. Vallim, J. M. Farinesand and J. E. R. Cury Prac-
ticing engineering in a freshman introductory course, IEEE
Transactions on Education, vol. 49, pp. 74-79, Feb. 2006.

[3] B. S. Heck, N. S. Clements and A. A. Ferri, A LEGO ex-
periment for embedded control system design, IEEE Control
Systems, vol. 24, pp. 61-64, Oct. 2004.

[4] C. J. Pretorius, M. C. du Plessis and C. B. Cilliers, A Neu-
ral Network-based kinematic and light-perception simulator
for simple robotic evolution, Proceedings of the 2010 IEEE
Congress on Evolutionary Computation(CEC), Jul. 2010.

5] H. V. D. Silva, W. S. Gongora, A. Goedtel and M. B. R.
VALLIM, Um estudo comparativo entre arquiteturas neurais
aplicadas a um robd autdénomo em trajetoria orientada, Anais
do XIX Congresso Brasileiro de Automaética, Sep. 2012.

[6] M. Gasperi and P. Hurbain, Extreme NXT: Extending the
Lego Mindstorms NXT to the Next Level, 2nd ed., Apress,
New York City, 2009.

[7] S. Toledo, Analysis of the NXT Bluetooth-
Communication Protocol, 2006, available at
http://www.tau.ac.il/ stoledo/lego/btperformance.html.

8] A. Shaw, Class RS-485, 2012, available at www.lejos.

sourceforge.net/nxt/nxj/api/lejos/nxt/comm/RS485.html.
J. Axelson, Networks for Monitoring and Control Using an RS-
485 interface, Microcomputer Journal, vol. 1, pp. 27, 1995.
[10] P. Wallich, Mindstorms: not just a kid’s toy, IEEE Spectrum,
vol. 38, pp. 52-57, Sep. 2001.

[11] I. N. Silva, D. H. Spatti and R. A. Flauzino, Redes Neurais Ar-
tificiais para Engenharia e Ciéncias Aplicadas - Curso Pratico,
1st ed., Artliber, 2010.

[12] E. Obrien, Teaching Critical Engineering and Robotics Con-
cepts Using LEGO MINDSTORMS NXT and LabVIEW,
2012, available at sine.ni.com/cs/app/doc/p/id/cs-12501.

[9

